
Albert-Ludwigs-Universität, Institut für Informatik November 16, 2017
Prof. Dr. Fabian Kuhn
M. Ahmadi, P. Schneider

Algorithm Theory - Winter Term 2017/2018

Exercise Sheet 1

Hand in by Thursday 10:15, November 2, 2017

Exercise 1: Landau Notation - Formal Proofs (2+2+3+3 Points)

For a function f(n), the set O
(
f(n)

)
contains all functions g(n) that are asymptotically not growing

faster than f(n). This is formalized as follows:

O
(
f(n)

)
= {g(n) | ∃c > 0,∃n0 ∈ N, ∀n ≥ n0 : g(n) ≤ cf(n)}

The set Ω
(
f(n)

)
contains all functions g(n) with f(n) ∈ O

(
g(n)

)
. Finally, Θ

(
f(n)

)
, contains all

functions g(n) for which both f ∈ O
(
g(n)

)
and g ∈ O

(
f(n)

)
is true. For each pair of functions from

(a) to (c) prove whether g(n) ∈ O
(
f(n)

)
or g(n) ∈ Ω

(
f(n)

)
or both, i.e., g(n) ∈ Θ

(
f(n)

)
.

Note: You do not have to prove negative results g(n) /∈ O
(
f(n)

)
, it suffices to claim these correctly.

(a) g(n) = 100n, f(n) = 0.1 · n2

(b) g(n) =
3
√
n2, f(n) =

√
n

(c) g(n) = log2(2
n · n3), f(n) = n Hint: You may use that log2 n ≤ n for all n ∈ N.

(d) Fill out the following table (with 3or 7) based on whether the statement is true or false.

Note: You loose 1
2 points for each wrong cell.

g ∈ O(f) f ∈ O(g) g ∈ Ω(f) f ∈ Ω(g) g ∈ Θ(f) f ∈ Θ(g)

a)

b)

c)

Sample Solution

(a) It is 100n ∈ O(0.1n2). To show that we require constants c,M such that 100n ≤ c · 0.1n2 for all
n ≥M . Obviously this is the case for c = 1000 and M = 1. However 0.1n2 /∈ O(100n)!

(b) We have f(n) ∈ O(g(n)). Let c := 1 and M := 1. Then we have

g(n) ≤ c · f(n)

⇐⇒ n1/2 ≤ n2/3

⇐⇒ 1 ≤ n1/6

⇐⇒ 1 ≤ n

which is satisfied for n≥M=1. Consequently g(n)∈Ω(f(n)). However g(n) /∈O(f(n))!

1

(c) g(n) ∈ O(f(n)) holds. We give c > 0 and M ∈ N such that for all n ≥M : log2(2
n · n3) ≤ c · n.

log2(2
n · n3) = log2(2

n) + log2(n
3) = n+ 3 · log2(n)

Hint
≤ n+ 3n = 4n.

Thus log2(2
n · n3) ≤ c · n for n ≥M := 1 and c := 4.

We also have that f(n) ∈ O(g(n)) holds because for all n ∈ N:

f(n) = n ≤ n+ 3 · log2(n) = log2(2
n · n3) = g(n).

Consequently we have g(n) ∈ Θ(f(n)), i.e. O(f) = O(g).

We obtain the following table:

g ∈ O(f) f ∈ O(g) g ∈ Ω(f) f ∈ Ω(g) g ∈ Θ(f) f ∈ Θ(g)

a) 3 7 7 3 7 7

b) 7 3 3 7 7 7

c) 3 3 3 3 3 3

Exercise 2: Sort Functions by Asymptotic Growth (5 Points)

Using the O-notation definition, give an ordered sequence of the following functions based on their
asymptotic growth . Between each consecutive elements g and f in your list, insert either ≺ (in case
g ∈ O(f) and f /∈ O(g)) or ' (in case g ∈ O(f) and f ∈ O(g)).

Note: You loose 1
2 points for each error.

n2
√
n 2n log(n2)

3n n100 log(
√
n) (log n)2

log n 10100n n! n log n
n · 2n nn

√
log n n

Sample Solution
√

log n ≺ log(
√
n) ' log n ' log(n2)

≺ (log n)2 ≺
√
n ≺ n ' 10100n

≺ n log n ≺ n2 ≺ n100 ≺ 2n

≺ n · 2n ≺ 3n ≺ n! ≺ nn

Exercise 3: Recurrence Relations (3+3+3 Points)

Let α, β be constants and let T (n) be a monotonously increasing function in n with

T (1) ≤ α, T (n) ≤ 4 · T (n/4) + β · n.

(a) Guess an upper bound for T (n) (as tight as possible, with the given knowledge about T (n), e.g.
by repeated substitution, cf. lecture). You may assume that n = 4k for some k ∈ N.

(b) Prove your upper bound via induction on k. Assume that n = 4k for some k ∈ N.

(c) Give an asymptotic upper bound (O-Notation) for T (n), assuming n = 4k for some k ∈ N. Prove
that the same bound applies to T (n) for all n ∈ N (i.e., if n is not necessarily a power of 4).

2

Sample Solution

(a) We use repeated substitution to guess a tight (with the given knowledge) upper bound of T (n).

T (n) ≤ 4 · T (n4) + β · n
≤ 4 · (4 · T (n

16) + β · n4) + β · n = 42 · T (n
42

) + 2βn

≤ 42 · (4 · T (n
43

) + β · n
42

) + 2βn = 43 · T (n
43

) + 3βn

≤ · · ·
∗
≤ 4k · T (n

4k
) + kβn

n=4k
= n · T (1) + βn log4 n ≤ αn+ βn log4 n *: ’educated guess’

(b) Induction base: Let k = 0, i.e. n = 40 = 1.

Then we have T (40) = T (1) ≤ α = α · 1 + β · 1 · 0 = α · 1 + β · 1 · log4 1 3.

Induction hypothesis: Assume T (4k) ≤ α4k + β4kk = αn+ βn log4 n for k ∈ N (where n=4k).

Induction step: Using the induction hypothesis we prove the claim for 4n = 4k+1:

T (4n) = T (4k+1) ≤ 4 · T (4
k+1

4) + β · 4k+1 = 4 · T (4k) + β · 4k+1

IH
≤ 4(α4k + β4kk) + β · 4k+1 = α4k+1 + β4k+1(k + 1) = α4n+ β4n log4(4n).

(c) From part (a) and (b) we learned that T (n) ≤ αn + βn log4 n, for n = 4k, k ∈ N. Hence
T (n) ∈ O(n log n). Now let n ∈ N arbitrary. We choose k ∈ N such that 4k−1 ≤ n ≤ 4k (4k is the
power of 4 bigger than n, which is closest to n). Since T (n) is monotonously increasing, we have

T (n) ≤ T (4k)
(a),(b)

= α4k + β4kk = 4α4k−1 + 4β4k−1 + 4β4k−1(k − 1)

4k−1≤n
≤ 4

(
(α+ β)n+ (βn log4 n)

)
∈ O(n log n)

Note: An even faster solution would be to cite the Master Theorem for recurrences which imme-
diately implies T (n) ∈ O(n log n) for arbitrary n ∈ N due to T (n) ≤ 4 · T (n/4) + β · n.

Exercise 4: Master Theorem for Recurrences (5 Points)

Use the Master Theorem for recurrences, to fill the following table. That is, in each cell write Θ
(
g(n)

)
,

such that T (n) ∈ Θ
(
g(n)

)
for the given parameters a, b, f(n). Assume T (1) ∈ Θ(1). Additionally, in

each cell note the case you used (1st, 2nd or 3rd). We filled out one cell as an example.

Note: You loose 1
2 points if the complexity class is wrong and another 1

2 if the case is wrong.

T (n)=aT (nb)+f(n) a = 1, b = 2 a = 3, b = 2 a = b = 4

f(n) = 1

f(n) = n2 Θ(n2), 2nd

f(n) = n log n

Sample Solution

T (n)=aT (nb)+f(n) a = 1, b = 2 a = 3, b = 2 a = b = 4

f(n) = 1 Θ(log n), 3rd Θ
(
nlog2 3

)
, 1st Θ(n), 1st

f(n) = n2 Θ(n2), 2nd Θ(n2), 2nd Θ(n2), 2nd

f(n) = n log n Θ(n log n), 2nd Θ
(
nlog2 3

)
, 1st Θ(n log2 n), 3rd

3

Exercise 5: Almost Closest Pairs (4+7 Points)

In the lecture, we discussed an O(n log n)-time divide-and-conquer algorithm to determine the closest
pair of points among a set of n points on the real plane R2. Assume that we are not only interested
in the closest pair of points, but in all pairs of points that are at distance at most twice the distance
between the closest two points.

(a) How many such pairs of points can there be? It suffices to give your answer using the O-notation.

(b) Devise an algorithm that outputs a list with all pairs of points at distance at most twice the
distance between the closest two points. Describe what you have to change compared to the
closest pair algorithm of the lecture and analyze the running time of your algorithm.

Sample Solution

The recursive algorithm for finding the closest pair of points, that was presented in the lecture,
recursively divided the set of points on the plane into two sets and found the minimal distance as
min{d`, dr, d`r}, where d` and dr are the minimal distances among the pairs of points in both sets and
d`r is the minimal distance between pairs of points that lie in different sets. It was shown that finding
d`r has linear complexity and the overall running time of the algorithm is O(n log n).

2d/3

2d/34d

4d

(a) Positioning of points that are at
distance at most 2d and at least at
distance d around the actual point
we are checking.

2d

4d

2d/3

2d/3

(b) There is at most one point in each small square.
We need to look only at most at 17 points.

Figure 1: Each small square can contain at most one point inside.

(a) Let us assume that the closest pair of points is already known and the distance between them is d.
For each point p we evaluate how many points there can be in distance 2d. Figure 1a shows how
the points at distance at most 2d from the center point can be covered using 36 squares with side
length 2d/3. As 2

√
2d/3 < d each such square can contain at most one point (including points on

the boundary) and since the center point is part of 4 squares, the figure shows that a point can
have at most 32 other points at distance at most 2d. This way we count each pair twice and thus
the number of pairs of points at distance at most 2d is at most 32

2 n ∈ O(n).

(b) Now, let us modify the divide-and-conquer algorithm from the lecture, in order to solve our task.

As in the closest pair algorithm of the lecture, after sorting points by their x-coordinate, we divide
the set of points into a left subset Sl and a right subset Sr of equal size and we recursively find
the smallest distance d` (dr) in the left (right) half, as well as the list L` (Lr) that contains all
pairs of points in S` (Sr) that are in distance at most 2d` (2dr) of each other.

For the merging step we find the smallest distance d`r between points that are on different sides
of the bisection line. Additionally we compile a list L`r of pairs of points at distance at most

4

2 min{d`, dr} such that the points lie on different sides. We compute d = min{d`, dr, d`r}, con-
catenate the three lists and remove all pairs (p, q) for which dist(p, q) > 2d from the combined
list. Finally, we return d and the list with all pairs of points at distance at most 2d.

The following pseudocode provides an overview over the steps involved in the augmented algorithm.

Algorithm 1 DoubleMinDist(S) . returns (d, L, Y)

. Note 1: We require S to be sorted by x-coordinate to be able to split it in O(n).a

. Note 2: d = min
u,v∈S

d(u, v), L = {(u, v) | u, v ∈ S, d(u, v) ≤ 2d}, Y = ”S sorted by y-coordinate”

if |S| < 4 then . Base case, O(1)
Use the naive Algorithm (check all pairs of nodes) to calculate (d, L, Y)
return (d, L, Y)

Divide S equally into S` and Sr along a vertical bisection line b . ”Divide”, O(n)

(d`, L`, Y`)← DoubleMinDist(S`) . ”Conquer”, 2 · T (n/2)
(dr, Lr, Yr)← DoubleMinDist(Sr)

. ”Merge”, O(n)
d← min(d`, dr) . Calculate current minimum distance, O(1)
Y ← MergeLists(Y`, Yr) . Merge sorted lists into one, O(n) (cf. Mergesort)
(d`r, L`r)← DoubleMinDistMerge(Y, d, b) . Pseudocode below

. Determines d`r = min
u∈Y`,v∈Yr

d(u, v) and L`r = {(u, v) | u ∈ Y`, v ∈ Yr, d(u, v) ≤ 2d} in O(n)

d← min(d, d`r) . Calculate new minimum distance, O(1)
L← L` ∪ Lr ∪ L`r . Concatenate lists, O(n)
L← L \ {(u, v) | dist(u, v) > 2d} . Remove pairs violating new minimum distance 2d, O(n)
return (d, L, Y)

aAlternatively, we can use the algorithm ”median of medians” to find a decent pivot (i.e. a point close to the
median) in an unsorted list S in O(n) along which we can split it in two (again unsorted) lists S`, Sr in O(n), while
retaining the claimed runtime.

Let us take a closer look at the merge step DoubleMinDistMerge(Y`, Yr) of the algorithm
(pseudocode is provided further below). Our goal is to compute d`r and L`r in O(n). Just as in
the original algorithm we apply a procedure commonly called ’sweep-line’-approach, which iterates
the points (in this context also called events) in Y = Y` ∪ Yr in ascending order by y-coordinate.
By doing so we determine d`r by ’looking ahead’ in Y , to find those pairs in question. Additionally
we keep track of all pairs from opposite parts of the bisection line which have distance ≤ 2d.

The idea behind the correctness of algorithm DoubleMinDistMerge is that for each point e
within distance 2d of the bisection line b, we only have to look at points in Y whose difference
with respect to the y-coordinate is at most 2d. This means when we iterate Y to find a point close
to e, then as soon as we find a point farther than 2d from e in terms of y-coordinate (or if we are
at the end of Y) we can stop looking ahead. Moreover, we only look at ”partners” p for e with a
bigger y-coordinate, because the other pairs were already found during previous ”events”.

Just as important as correctness is the running time of DoubleMinDistMerge, which we claim
is O(n). This is not so clear, since at each event e, we may have to iterate over many points in Y ,
possible forcing us to iterate to the very end of Y thus giving us a runtime of O(n) just to handle
one event. If this could happen at every event e, we could have a runtime of O(n2)! However we
argue that on average this does not happen too often, which means that we can bound the total
number of ”look aheads” separately.

We do this by bounding the number of times a point p in Y is being looked at by a prior event
e. We realize that any point p in Y can have at most 9 points e on the other side of b which are
within distance 2d of b and have a y-coordinate which is at most 2d smaller than that of p. Figure
1b illustrates this by dividing a rectangle of size 2d × 4d centered at b into squares 2d

3 ×
2d
3 (the

5

idea is similar to (a)). This means that each point p in Y gets looked up at most 9 times, since p
can not get looked up by events outside a 2d strip around b because those were discarded in the
first place.

Therefore the n points in Y are being ”touched” at most 9n = O(n) times in total during the
look ahead process of all events. Besides that, all other operations which we execute during an
event require only constant time, thus adding only an additional O(n), which means that the
whole merging process can be done in O(n). Putting all together we get the following recurrence
relation for DoubleMinDist

T (n) ∈ O(1), for n < 4, and T (n) ∈ 2 · T (
n

2
) +O(n), n ≥ 4

which solves to O(n log n) with the Master Theorem.

Remark: The analysis becomes significantly easier if we change the algorithm to prefilter Y so it
only contains points within the 2d strip around the bisection line b (in time O(n)). Specifically,
we can get rid of the amortization argument.

Algorithm 2 DoubleMinDistMerge(Y, d, b) . returns (d`r, L`r)

. Note 1: d = min
(u,v)∈Y 2

` ∪Y 2
r

d(u, v), b = bisection line (basically a x-coordinate)

. Note 2: d`r = min
u∈Y`,v∈Yr

d(u, v) and L`r = {(u, v) | u ∈ Y`, v ∈ Yr, d(u, v) ≤ 2d}
. Note 3: Assume that Y = Y` ∪ Yr supports classical list operations and its elements represent
points. Additionally Y is sorted by y-coordinate with the ’lowest’ point at the head of the list

d`r ← d, L`r ← ∅ . Initialization

while |Y | > 1 do
e← Y.PopHead . Select point (event) which is within a 2d strip around bisection line b
while e.Point farther than 2d from bisection line b do

if |Y | = 1 then return (d`r, L`r)

e← Y.PopHead

p← Y.Head . Define pointer that iterates through list-elements of Y
while p.Point.YCoord− e.Point.YCoord ≤ 2d and p.HasNext do

if p.Point on same side of b as e.Point or p.Point farther than 2d from b then
p← p.Next . Move pointer to next list element and continue

else if d(p.Point, e.Point) ≤ 2d then
d`r ← min(d`r, d(p.Point, e.Point)) . Update d`r
L`r ← L`r ∪ {(p.Point, e.Point)} . Add new pair of points (p.Point, e.Point)

return (d`r, L`r)

Remark: PopHead returns and removes the head of a list. Head returns the head of a list
(without removing it). Next returns the successor of a list element. HasNext returns true if
the list element has a successor, else false. Point returns the point a list element represents.
YCoord returns the y-coordinate of a point.

6

